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1
METHOD AND SYSTEM FOR
SUPER-RESOLUTION SIGNAL
RECONSTRUCTION

FIELD OF THE INVENTION

This invention is generally in the field of signal reconstruc-
tion techniques, and relates to a method and system for band-
width extrapolation and super-resolution signal reconstruc-
tion. The invention can be implemented in signal
measurement systems where signals, in particular in optical
imaging systems, short pulse detection systems, etc.
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BACKGROUND

It is a common goal of various measurement systems to
enhance the resolution of measured data. Such measurement
systems include for example optical imaging systems, where
the resolution is generally limited by diffraction limit, i.e.
defining the smallest resolvable feature in optical imaging of
the specific imaging system, which is determined mainly by
the numerical aperture of optical components (lenses, etc.)
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involved. However, even a system with an infinite aperture
has a resolution limit, which arises from the wavelength A of
an electromagnetic (EM) field. Therefore, the best recover-
able resolution of the optical system is A/2 regardless. This is
because the propagation of EM waves in bulk media acts as a
low-pass filter, for distances much larger than the wavelength,
rendering spatial frequencies larger than 1/A evanescent.
Therefore, such spatial frequencies decay rapidly, on a dis-
tance scale of several wavelengths, and the observation of
sub-wavelength features is essentially impossible using con-
ventional imaging methods.

Over the years, there have been many attempts to bypass
the A/2 limit on optical imaging. Many of these attempts
focused on measurements at a very close proximity (‘“near
field”) to the sub-wavelength specimen. One such approach is
the Near-field Scanning Optical Microscope (NSOM or
SNOM). This technique is based on a very narrow tip, which
samples the electromagnetic field point by point at the near
field of the sub-wavelength specimen. However, this tech-
nique always requires scanning the sample point-by-point, at
very high precision (nanometers) and at a very short distance
from the sample (sub-microns). Hence, NSOM cannot cap-
ture a full image in real time. Other known approaches are
based on probing the information with sub-wavelength holes
made from thin film of plasmonic metals, and scanning the
sample, or using specific arrangements of nano-hole arrays in
plasmonic metals to construct super-oscillatory wavepackets
in the form of sub-wavelength hot-spots, and then scan the
sample at sub-wavelength resolution [1]. Both of these meth-
ods rely on scanning, hence cannot yield real-time imaging
either. Other techniques for sub-wavelength imaging rely on
distributing smaller-than-wavelength fluorescing items on
the object and repeating the experiments multiple times [2,3].
All of these techniques suffer from such disadvantages as
long scanning, or imaging time involved in scanning, or a
need for repeating the experiments, rendering real-time imag-
ing impractical.

Yet another method involves imaging devices (superlens,
hyperlens, etc.) made of negative-index materials [4-7]. How-
ever, optical negative index materials sufter from huge losses,
and in addition the hyperlens can deal only with one-dimen-
sional information, not with full 2D images. Hence, negative-
index materials currently do not offer viable technology for
sub-wavelength optical imaging.

There have been attempts to achieve sub-wavelength imag-
ing using algorithmic techniques (processing image data).
These techniques rely on the analyticity of an EM field: if an
analytic function is known exactly at some finite region, it can
be completely recovered and uniquely found by analytic con-
tinuation. Several concepts and extrapolation methods based
on the analytic theory have been developed. However, these
methods are extremely sensitive to noise in the measured data
and to the assumptions made on the information to be images
(signal to be recovered).

Some examples of resolution enhancement techniques are
described in US 2008/0260279 providing a method for itera-
tive derivation of a master image from sampled images of
non-identical, at least partially overlapping, regions of a
scene. The method includes defining a transformation opera-
tor mapping positions within the master image to correspond-
ing positions in the sampled image; a distortion operator
simulating a modulation transfer function associated with an
imaging sensor from which the sampled image was gener-
ated; and a sampling operator for reducing an image from the
output resolution to the resolution of the sampled image. For
each sampled image the transformation operator, distortion
operator and sampling operator are applied to a current mas-
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ter image hypothesis to generate a predicted image A differ-
ence image is calculated which has pixel values correspond-
ing to the difference in corresponding pixel values between
the sampled image and the predicted image. A back-projec-
tion of each of the difference images is performed to generate
a correction image for the current master image hypothesis.
Finally, the correction images are employed to perform a
correction to the current master image hypothesis to generate
anew master image hypothesis. The correction to the current
master image hypothesis includes combining the correction
images by deriving a weighted average of values of corre-
sponding pixels in the correction images. The weight of each
pixel in each correction image is calculated as a function of a
distance as measured in the sampled image between: a point
in the sampled image to which the pixel in the correction
image is mapped by the transformation operator, and at least
one pixel centroid proximal to that point.

Pulse-shape measurement of a short pulse (optical or elec-
tronic) signal is another significant example where resolution
enhancement of the measurement systems is of much interest.
In optics, short laser pulses with durations in the range of
nano second to picosecond and femtosecond time-scales are
produced regularly. Ultra-short pulses in the attosecond time-
scale have been recently produced. In many systems or appli-
cations where short pulses are engaged, it is very important to
characterize the shape of the pulse (intensity only or ampli-
tude and phase) at high resolution. There are several devices
and techniques to measure the pulse-shape of a short laser
pulse. For example, high-speed photodiodes or streak camera
in conjunction with oscilloscopes are widely used for direct
measurements of the pulse-shape (intensity profile) of laser
pulses at nanosecond to picosecond temporal resolution
because of their simplicity, robustness, relative insensitive-
ness to the light properties, small size, and low-cost. Several
techniques for measuring the pulse-shape of short pulses
make use of nonlinear interaction between the pulse and a
another pulse with a known pulse-shape (e.g. cross correla-
tion, or cross-correlation frequency resolved optical gating)
or with a time-delayed replica of the measured pulse (e.g.
autocorrelation, frequency resolved optical gating (FROG),
and SPectral Interferometry for Direct E-field Reconstruction
which is termed SPIDER).

In a different area of information processing, the past
decades have witnessed major breakthroughs in data com-
pression and advances in sampling techniques. Most notably,
a new technique was developed in 2006, with the purpose of
reducing the sampling rate of information. The technique is
called compressed sensing (CS) and it is now widely used for
sub-Nyquist sampling of data, and recovering data from a
small number of samplings. In doing that, the technique
mostly relates to interpolation of information from sub-
sampled data, and relies on a single requirement for prior
information that the signal (to be recovered) is sparse in a
known basis [8-10]. Currently, there are two main mindsets in
the field of CS, both mindsets trying to reconstruct a function
by a few measurements. The first approach in the CS tries to
reconstruct a sparse function by measuring randomly in the
Fourier domain of the function. These randomly distributed
measurements are aimed at reconstructing the entire function,
provided the function is sparse. The second CS approach is
aimed at enhancing the resolution of a known low-resolution
image. This second technique is based on measurements in
the same domain as the original image, and requires that
information is retrieved from several defined examples in
order to calibrate the algorithm for resolution enhancement.
This method can, for example, produce a 200x200 pixels
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image from an original image with resolution of 20x20 pix-
els, but still cannot add data which was not in the original
image.

Some examples of using the CS technique in signal pro-
cessing are described in the following patent publications:

U.S. Pat. No. 7,646,924 provides a method and apparatus
for compressed sensing yields acceptable quality reconstruc-
tions of an object from reduced numbers of measurements. A
component x of a signal or image is represented as a vector
having m entries. Measurements y, comprising a vector with
n entries, where n is less than m, are made. An approximate
reconstruction of the m-vector x is made from y. Special
measurement matrices allow measurements y=Ax+z, where
y is the measured m-vector, x the desired n-vector and z an
m-vector representing noise. “A” is an n by m matrix, i.e. an
array with fewer rows than columns. “A” enables delivery of
an approximate reconstruction, x*, of x. An embodiment dis-
closes approximate reconstruction of x from the reduced-
dimensionality measurement y. Given y, and the matrix A, x”
of x is possible. This embodiment is driven by the goal of
promoting the approximate sparsity of x*.

U.S. Pat. No. 7,511,643 describes a method for approxi-
mating a plurality of digital signals or images using com-
pressed sensing. In a scheme where a common component x,.
of said plurality of digital signals or images an innovative
component x, of each of said plurality of digital signals each
are represented as a vector with m entries, the method com-
prises the steps of making a measurement y ., where y, com-
prises a vector with only n, entries, where n, is less than m,
making a measurement y, for each of said correlated digital
signals, where y, comprises a vector with only n, entries,
where n, is less than m, and from each said innovation com-
ponents y,, producing an approximate reconstruction of each
m-vector X, using said common component y,. and said inno-
vative component y,.

US 2009/141995 provides a method of compressed sens-
ing imaging includes acquiring a sparse digital image b, said
image comprising a plurality of intensities corresponding to
an I-dimensional grid of points, initializing points (x®, y®),
wherein x® is an element of a first expanded image x defined
by b=R®~'x, wherein R is a Fourier transform matrix, ® is a
wavelet transform matrix, y® is a point in 3, ,'V,
& 'x®¥)2 v, is a forward finite difference operator forai”
coordinate, and k is an iteration counter; calculating a first
auxiliary variable s® from x®—t,(a®Z, L *y, ©P+DOR*
(RO x®_b)), wherein t,,c. are predetermined positive sca-
lar constants, the sum is over all points n in X, and L* is an
adjoint of operator L=(V,, . . ., V,); calculating a second
auxiliary variable t,* fromy,®+t,L, ®'x®, whereint, isa
predetermined positive scalar constant; updating x***) from
sign (s)max {0,Is®|—t'p}, wherein B is a predetermined
positive scalar constant; and updating y, *** from min {1/1,,
It, @1}, @/, @

US 2010/0001901 provides for method and apparatus for
developing radar scene and target profiles based on Compres-
sive Sensing concept. An outgoing radar waveform is trans-
mitted in the direction of a radar target and the radar reflec-
tivity profile is recovered from the received radar wave
sequence using a compressible or sparse representation of the
radar reflectivity profile in combination with knowledge of
the outgoing wave form. In an exemplary embodiment the
outgoing waveform is a pseudo noise sequence or a linear FM
waveform.

Also, the compressed sensing technique is described in
“Image Super-Resolution as Sparse Representation of Raw
Image Patches”, Jianchao Yang, John Wright, Thomas
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Huang, Yi Ma., IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2008.
General Description

There is a need in the art in facilitating resolution enhance-
ment of measurements of signals of various types (e.g. opti-
cal, electronic), such as to be beyond a so-called “physical
resolution” of measurements. Such physical resolution limi-
tation is typically defined by the response function of a mea-
surement unit (sensor) or a measurement technique (e.g.
cross-correlation of measured data with a known reference
data).

The resolution with which a signal is collected and
detected (measured) in a measurement unit is limited by three
main parameters. The first parameter is associated with the
sampling of a measurement procedure, such as the sampling
rate of a detector, such as spatial resolution of an optical
sensor (pixel size in a camera) used for capturing an image, or
the temporal sampling rate of detector (e.g. oscilloscope), or
the retardation step of an interferometer (or spectrometer).
The second parameter is the effective response function of the
measurement unit, corresponding to either spatial or temporal
frequency response. In this connection, it should be under-
stood that in systems which are linear and shift invariant (e.g.
utilizing coherent or completely incoherent illumination)
such effective response function is actually represented by a
frequency response function itself, while for other system
(e.g. non-linear and/or shift variant, e.g. utilizing partially
incoherent illumination) the effective response function is
determined by a relation between the input signal and the
output signal (measured by said measurement system). For
example, for measurements of an input field in the form of
partially-spatially-incoherent light, there is actually no trans-
fer function, because the operation is not linear and not shift-
invariant. Thus, in the present application, the term “fre-
quency response function” or “transtfer function” or “spectral
response function” should be interpreted broadly meaning the
effective response function which in some cases is expressed
by a relation between the input and output fields/signals/data.
The third parameter is the signal to noise ratio of the mea-
surements.

The inventors have found a technique to restore, from the
sensed (measured) data, those features of the input informa-
tion (input signal) that were lost in the sensed data due to the
physical resolution limitation, and cannot be retrieved by just
normalizing the measured data by the frequency transfer
function of the measurement unit. In other words, the
invented technique enables to overcome the limitation asso-
ciated with the highest frequency in the measured data, at
which the signal to noise ratio allows reconstruction through
de-convolution (division of the measured data by the spectral
transfer function of the measurement system).

The response function of the measurement system and the
signal to noise ratio of measurements by said system are the
main factors that define and limit the resolution at which the
signal is measured. Most often, a spectral response function,
g(w), acts as a low pass filter (LPF) with a characteristic
cutoff-frequency f. (where in the time-domain f~1/t, t,
being the rise-time of the detector). If the input data (signal or
field) contains features at frequencies higher than the cutoft-
frequency, then the sensor output signal (measured data) devi-
ates from the input data. In this case, de-convolution methods
are often used for extracting the input data. De-convolution
methods consist of reversing the detector spectral filtering
operation, where the latter is convolution of the input signal
with the spectral transfer function of the detector (frequency
filtering). De-convolution is achieved by re-amplifying the
detector output signal (in the spectral domain) by a factor that
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corresponds to the inverse of the spectral transfer function of
the detector (1/1g(w)l). This amplification factor becomes
very large at high-frequency spectral regions (Ig(w)l<<1).
Hence, tiny errors in these spectral regions are very unforgiv-
ing because they are amplified by a very large factor, i.e. low
noise in such frequencies is amplified (as well as the signal)
thus reducing signal to noise ratio (SNR). In fact, de-convo-
Iution processes cannot recover information from spectral
regions in which SNR(w)<1/Ig(w)I.

Often, the response function of the system contains a genu-
ine cutoff frequency, above which the transfer function is zero
(or corresponds to very large attenuation). The amplitudes of
frequencies higher than the cutoft frequency are greatly
attenuated, such that these high-frequency signals are below
the noise level and cannot be extracted (separated from the
noise). Such high frequency information is therefore consid-
ered as lost. Thus, it is commonly believed that information in
these high frequency spectral regions is lost and cannot be
recovered. The frequency at which SNR(w)<1/Ig(w)! actually
presents the effective cutoff frequency of the measurement.

However, high resolution of a measured signal requires
high frequency features of the input signal to be measured
(i.e., high temporal frequencies for a time-varying signal, or
high spatial frequencies in the case of an optical image). For
example, in the conventional optical microscopy, an image
cannot be captured with resolution higher than the diffraction
limit of the optical system (i.e. A/2 in case of free-space
propagation). For example, considering free space propaga-
tion of an electromagnetic (EM) wave, if the EM wave propa-
gates a distance z from an object plane to a detector much
larger than the wavelength A, then, since the transfer function
of the optical system (CTF for coherent illumination or OTF
for incoherent illumination) acts as a low-pass filter, all infor-
mation carried by spatial frequencies larger than 1/A are lost.

The present invention provides for reconstructing informa-
tion (an input signal) at a resolution higher than that defined
by the highest frequency of the measuring system or by a ratio
between the spectral transfer-function and the signal-to-noise
ratio [SNR(w)<1/Ig(m)I].

In this connection, it should be understood that sensing
(measuring) data includes: detection of signals by a suitable
sensor unit (detector), where the detected signals may be the
input field or those resulted from a known interaction between
the input data and reference data (e.g., correlation with known
signals); and processing of the measured (detected) data. The
detection procedure is to be as accurate as possible, using any
suitable detector. Such accurate detection may include any
de-coding procedure, provided certain predetermined coding
(or pre-processing) of the signal occurred during its propaga-
tion to the detector, e.g. at the spectral plane. Such coding or
pre-processing may be done by software and/or hardware
(e.g. using a mask, e.g. a phase mask or grating). The prin-
ciples of the invention are applicable to any measured data,
irrespective of whether the detection procedure includes de-
coding or not. In case the coding/decoding is considered, the
invented technique deals with the decoded measured data.

The present invention provides a novel processing tech-
nique for processing the measured data to recover details
contained in the input information (input signal), that were
filtered out in the detection stage, due to the response function
of the measurement system (which includes a detector unit
and possibly also signal collector(s) on the way to the detec-
tor). The filtering out results in that the measured amplitudes
of'those signals or signal components are so small that divid-
ing them by the transfer response function leads to very large
errors.
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In other words, with the invented technique, the recon-
structed/recovered information contains frequencies higher
than the effective frequency cutoff of the effective response
function of a measurement system. The reconstruction of
measured data (optical field, in the context of optical imag-
ing) according to the invention takes advantages of the prin-
ciples of the known [.1 minimization and compressed sensing
techniques, in that it deals with the recovery of information
(input signals) that is sparse in some known basis. It should be
understood that a sparse signal is such that, in some basis it
contains mostly zeros and very few elements differing from
zero. The knowledge, or data, about the sparsity of the input
field may only contain the fact that the signal is sparse in some
basis, and the basis in which the signal is sparse might be a
priori known or determined during the measurement proce-
dure (e.g. during the reconstruction of the input field). It is
also required that there is a known relation between the signal
basis (where the information is sparse) and the measurement
base, and back. For some systems, this relation might be
written as a transformation operator. However, it should be
understood that the present invention does not need such
relation to be expressed as an operator, but just needs this
relation to be known. The invention properly utilizes the
measurement related data, namely data about effective
response function of the measurement system, together with
the above-described sparsity related data. As indicated above,
the invention takes into account the effective response func-
tion of the measurement system being expressed by relation
between the input field (represented in a basis in which it is
sparse) and the output field. In this connection, it should be
understood that considering the input field is represented in a
basis in which it is sparse (e.g. by some kind of initial pro-
cessing of the measured data using basic transformation), the
relation between the sparsity basis and the measurement basis
for linear shift-invariant measurement systems might corre-
spond to the effective response function of the measurement
system.

The invention allows for resolution enhancement beyond
the effective frequency cutoff of the signal collector (physical
limitation of the detection system). The present invention is
based on the following: among all signals that can be written
as a combination of some known basis functions, which yield
the measured results after being “smeared” by the known
transfer function (CTF or OTF), the sparsest one of the signals
is to be found, i.e. the one comprised of the fewest basis
functions. The inventors have termed this novel technique as
SMARTER (Sparsity Mediated Algorithmic Reconstruction
Technique for Enhanced Resolution) microscopy (in the sub-
wavelength case) and SMARTER pulse diagnostics for the
characterization of optical pulses.

Thus, according to one broad aspect of the present inven-
tion, there is provided a method for reconstructing an input
field sensed by a measurement system. The method com-
prises; providing data (prior knowledge) about the sparsity of
the input field (that the input signal (information to be recov-
ered) is sparse in a known basis), and data about effective
response function of the measurement system; and process-
ing measured data based on said known data. This “prior
knowledge” is used for processing the measured data, gener-
ated by the measurement unit, to recover the original infor-
mation (input signal). The processing stage comprises: a
determination of a sparse vector as a function of the follow-
ing: said data on the sparsity of the input field, said data about
the effective response function), and the measured data (out-
put of the measurement system); and using the sparse vector
for reconstructing the input information.
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The technique of the invention is based on the understand-
ing that, out of all the possibilities of extrapolating the spec-
trum of the measured data (which all correspond to the same
measured data), given the prior knowledge described above,
the extrapolation yielding the sparsest input signal (informa-
tion to be recovered) is unique (in the absence of noise), or, in
the presence of noise, provides the recovered information that
is very close and the closest to the input information [8-12].
The technique provides for better reconstruction (higher reso-
Iution) if the signal basis and the measurement basis are the
least correlated, or in other words they are “incoherent with
one another” (here the term “incoherence” should not be
confused with coherence properties of optical fields). It
should, however, be understood that such condition as the
least correlation between the signal basis and the measure-
ment basis, while being preferable might be optional for the
operational principles and results of the technique of the
present invention. Instead, having the measured data occupy-
ing the majority of the basis functions in the measurement
basis would suffice to recover the input signal properly. When
the sparsity basis and the measurement basis are the least
correlated, the number of necessary samplings (in the mea-
surement basis) is the smallest.

This technique allows for resolution of the reconstructed
input field to be well above an effective frequency cutoff of
said response function.

Let us consider for example, optical imaging applications,
where prior knowledge about the sparsity of the input field
and about the effective response function is provided (i.e. the
input image contains a small fraction of non-zero pixels in
some known or determined bases, and transformation from
the near field to the plane where the data is measured is
known). Here, the simplest basis is the near field. The least
correlated basis with the near field is the far-field (Fourier
plane of the information). Hence, in the optical imaging
applications, the technique of the present invention might
provider better results if the measurements are taken in the
far-field. The transformation relating the near field and the far
field is simply the Fourier transform multiplied by the effec-
tive transform function which is CTF for coherent fields or
OTF for spatially-incoherent fields.

In the same context of optical imaging, one can use another
measurement basis: the image plane of an optical imaging
system. In this case, the transformation occurred during the
input field propagation through the optical measurement sys-
tem includes the following: Fourier transforming the input
signal, multiplying the Fourier transform by the CTF (or
OTF), and applying a further Fourier transform (with some
magnification) to the results of the multiplication. In this case,
the measurement basis and the sparsity basis are identical.
Nevertheless, the invented technique still works well, pro-
vided that the effective response function satisfies the follow-
ing condition: the measured data occupies a large fraction of
the measurement basis, and the transformation between the
two bases is known.

Thus, generally, the present invention is applicable to any
measurement basis, as long as the measured data occupies a
large fraction of the measurement basis, and the transforma-
tion between the two bases is known. The current invention
works well in all those measurement bases, provided just that
the input image is sparse in a known basis.

For optical imaging applications, the measurement unit is
configured for optical measurements, thus including an opti-
cal system (lenses etc.) and a suitable optical detector (or
camera). As indicated above, the effective response function
of such measurement unit is defined by a spatial frequency
transfer function which is associated with a Coherent Trans-
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fer Function (CTF) for coherent illumination case or an Opti-
cal Transfer Function (OTF) for incoherent illumination.
Using the method of the invention, the reconstructed input
information can have resolution above a cutoff of the OTF (or
CTF), which naturally defines the smallest resolvable feature
(diffraction limited spot) of the optical imaging system. Pref-
erably, the output field corresponds to a far-field image of the
input field.

It should be noted that the present invention provides for
reconstruction of signals with non-uniform phase, i.e. signals
with varying phases, such as signal with positive phase at one
point and negative phase at another, and in the most general
sense—signals with phase that can vary arbitrarily between 0
and 2z from one point to another. Thus, no further assump-
tions, such as non-negativity of the signal, are needed. The
recovery of signals (information) with non-uniform phase is
done, as part of the above-described reconstruction proce-
dure, by further using an iterative method called nonlocal
hard thresholding (NLHT). This technique consists of allo-
cating an off-support of the sparse signal in an iterative fash-
ion, by performing a thresholding step that depends on the
values of the neighboring locations (in real space). It should
be understood and will be described more specifically further
below that generally, that in some embodiments the processor
utility of the present invention might be preprogrammed to
identify whether the measured signal has uniform or non-
uniform phase and accordingly selectively apply either a first
processing model that does not utility NLHT (but utilize
Basis Pursuit (BP)) or a second processing model that does
utilize NLHT; or to eliminate the identification step and uti-
lize the second, more general model utilizing the NLHT. In
some other embodiments, where the invention is intended to
deal with uniform-phase signals (e.g. dealing with recon-
struction of input pulse shapes), the processor utility might
utilize only the BP model.

According to another broad aspect of the invention, there is
provided a system for reconstructing an input signal. The
system includes an input utility which is capable of receiving
and storing measured data generated by a measurement unit
(being supplied directly therefrom or not). The measured data
corresponds to an output signal generated by the measure-
ment unit in response to an input signal which is to be recon-
structed. The input unit also receives data indicative of the
sparsity of the input field, and data indicative of the effective
response function of the measurement unit (e.g. the spatial or
temporal response function; or a relation between the input
signal and the measurement signal). The system includes a
data processor utility which is preprogrammed for analyzing
and processing the received data. More specifically, the pro-
cessor determines a sparse vector which is a function of the
following: information about sparsity of the input signal, the
measured output signal, and the data about the effective
response function of the measurement unit; and uses the
sparse vector to reconstruct the input signal by base transfor-
mation of the sparse vector onto the original base of the input
signal.

According to yet another aspect of the invention, there is
provided a system for reconstructing an input optical field.
The system includes an input utility capable of receiving and
storing measured data (generated by an optical measurement
unit and supplied directly therefrom or not) corresponding to
an output field generated by the optical measurement unit in
response to the input optical field. The input utility also
receives data indicative of the sparsity of the input optical
field, and data indicative of the effective response function of
the optical measurement unit. The system includes a data
processor utility which is preprogrammed for analyzing and
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processing the received data to determines a sparse vector as
a function of the sparsity data, the measured date, and the
effective response function of the optical measurement unit;
and uses the sparse vector to reconstruct the input field by
base transformation of the sparse vector onto the original base
of the input signal.

In a yet further aspect, the invention provides a measure-
ment system comprising: an imaging system defining an
input field propagation to an optical detector, and a control
unit having a processor utility for processing measured data
output from said detector, the processor utility being config-
ured and operable for processing the measured data based on
data about sparsity of the input field and data about an effec-
tive response function of the imaging system to reconstruct
the input field with resolution above an effective cutoff of said
effective response function.

In some other embodiments, the invention is used for pro-
cessing temporal profile of data, the measured data being that
produced by an electronic sensing system. In this case, input
field to be measured and reconstructed may be a pulse (e.g.
optical pulse), especially a short pulse, namely relatively
short as compared to the physical limitation (e.g. rise time) of
a pulse detector. A general trend in short pulse-shape mea-
surement techniques and devices is that measurements at
higher resolution and larger bandwidth require more compli-
cated and costly devices or systems. Consequently, it is of
great interest to increase the resolution of a pulse-shape mea-
surement device or system by post recovery algorithms.

The most attractive application of this aspect of the inven-
tion is for reconstructing the profile (intensity profile or
amplitude and phase profiles), especially useful for ultra short
pulses (in picoseconds range and shorter). In these embodi-
ments, the effective response function of the measurement
unit corresponds to a temporal frequency response of the
electronic sensing system. Examples of measurement sys-
tems/detectors with which the invented technique can advan-
tageously be used include the following: oscilloscope, pho-
todiode, streak camera, cross correlation with a reference
filed/signal, auto correlation of the signal/field with itself,
frequency resolved optical gating (FROG), Spectral Interfer-
ometer for Direct E-field Reconstruction (SPIDER), Cross-
correlation Frequency resolved optical gating (XFROG),
GRENOUILLE, TADPOLE.

Thus, the invention, in it’s yet another broad aspects, pro-
vides a method and system to recover the profile of a short
pulse (an electronic pulse, an optical pulse, etc.), from mea-
surements taken by a relatively slow measurement system
(slow detector) in the meaning that the rise time of the detec-
tor is longer than the pulse duration. In these embodiments,
the known (initially provided) data includes data about the
sparsity of the input pulse and an effective response function
(e.g. temporal frequency response function defining a relation
between the measurement basis and the signal basis). The
shape of the pulse can be complex and its spectrum can
include frequencies at spectral regions beyond the effective
cutoff frequency for the measurement. Reconstruction uses
the measured output signals, the data about the effective
transfer function of the detection system, and the fact that
short pulses are inherently sparse (in time).

As indicated above, the measured data may include detec-
tion of the input field or its interaction with certain reference
signal. For example, an optical short pulse can be cross-
correlated with another (reference) pulse and the cross corre-
lation signal is measured. The invention provides for recon-
structing the input field (recover the structure (amplitude and
phase) of a short input pulse, being e.g. electronic or optical
pulse) by processing such measured data as well. Reconstruc-



US 9,159,119 B2

11

tion uses the output cross correlation signal, the known shape
of the reference pulse and the interaction model (i.e. cross
correlation) between the two pulses.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may
be carried out in practice, embodiments will now be
described, by way of non-limiting example only, with refer-
ence to the accompanying drawings, in which:

FIG. 1 is a block diagram of an example of a system of the
invention for reconstructing an input field;

FIGS. 2A to 2C illustrate the principles of the image recon-
struction according to the general art;

FIGS. 3 A and 3B compare the results of the reconstruction
technique of the present invention to that of FIG. 2A-2C;

FIGS. 4A and 4B exemplify the Optical Transfer Function
and frequency cutoff defined thereby, in respectively 2D and
1d-representation;

FIGS. 5A to 5F exemplify the image reconstruction proce-
dure according to the conventional technique and of the
invention;

FIGS. 6A and 6B show two examples respectively of an
optical system suitable to implanting the present invention;

FIGS. 7A to 7C show the experimental results of the tech-
nique of the invention using system of FIG. 6A;

FIGS. 8A to 8F compare the technique of the invention to
the conventional technique for reconstructing 2D objects;

FIGS. 9A and 9B exemplify how the invention can be used
for image reconstruction of living cells, being sparse objects;

FIGS. 10A and 10B exemplify how the invention can be
used for image reconstruction of integrated circuits, being
sparse objects;

FIGS. 11A to 11] compare the use of the invention and the
conventional technique for sub-wavelength image recon-
struction;

FIGS. 12A to 12] exemplify how the invention can be used
for reconstructing the shape of temporal optical pulses using
a slow detector;

FIGS. 13A to 13G show experimental results and compare
the use of the invention and the conventional technique for
reconstructing the shape of temporal optical pulses using a
slow detector;

FIGS. 14A to 14G illustrate a possible setting for recon-
structing the shape of temporal optical pulses using a slow
detector;

FIGS. 15A to 15C illustrate a Fourier transform infrared
(FTIR) spectrometer system and resulting spectral features of
a measure light beam, FIG. 15A show the measurement sys-
tem, FIG. 15C show Fourier transform of a measured beam
spectrum and FIG. 15C show the detected spectral features of
the measured beam:;

FIGS. 16A and 16B show full, truncated and reconstructed
interferograms obtained by FTIR system and corresponding
spectral features of a measured beam respectively; and

FIGS. 17A to 17D illustrate a truncated (measured) input
field, a projection map of'the truncated field on a bases family
and a corresponding original and reconstructed to fields and
their corresponding projection map respectively.

DETAILED DESCRIPTION OF EMBODIMENTS

Reference is made to FIG. 1 which shows schematically, by
way of a block diagram, an example of a system 10 of the
invention for reconstructing a sparse signal from an input
field IF. The input field IF may for example be an optical field
varying in the spatial domain, or an optical field varying in the
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time domain. The input field IF can be complex (carrying
information in both its amplitude and phase) or a real function
of spatial and/or temporal coordinates. The system 10 is a
computerized system for processing input data. Thus, the
system 10 includes a data input utility 12 and a data processor
utility 14. The system may also include a memory utility and
a data presentation utility (e.g. display) which are not specifi-
cally shown. Also, the system may be connectable to a com-
puter network (e.g. the Internet) and is thus installed with an
appropriate communication utility. The system 10 is config-
ured for processing measured data which corresponds to mea-
sured output MO of a certain measurement unit 16. It should
beunderstood that the system may perform real-time process-
ing of the measured data, while the system is connected to the
measurement unit (via wires or wireless signal transmission);
or may perform post-processing of the measured data being
applied to output data of the measurement system previously
stored in a memory utility of the system 10, or another appro-
priate memory device.

The measurement system 16 may be of any suitable type
which detects (receives and records) the input field IF (e.g.
optical, electronic signals) and produces output field (mea-
sured data) indicative thereof. The detected input field may be
an input signal coming from an object or a result of interaction
of such input signal with certain reference signal. The con-
struction and operation of the measurement system 16 in
general do not form part of the present invention; and the
invention can be used with any type of measurement system
of the kind having an effective response function associated
with a spatial or temporal frequency response of its output to
the input signal (field). The effective response function may
be determined by a specified mathematical relation defining
its measured output MO to the input field IF.

The measurement system 16, configured for measuring an
input field IF, includes an appropriate detector (e.g. pixel
matrix of the camera; oscilloscope; photodiode, etc.), and
may also include a low pass or a band pass filter for spatial or
temporal frequencies. It should be noted that one or more
physical elements of the system may act as a low pass (or
band-pass) filter, such as an aperture assembly (formed by
one or more apertures, €.g. one or more lenses); and/or by the
free space propagation of light from an object plane to a
detector plane (“image plane™). The low pass (or band-pass)
filter can also arise from the characteristics of the detector
itself, which may only minimally respond to high spatial or
temporal frequencies, so that these parts of the data are buried
in the noise of the measurement system 16. Additionally, in
some measurement systems the low pass filter may arise due
to operational technique of the system or photon life-time,
e.g. in Fourier transform infrared spectrometer (FTIR) or
Fabry-Perot spectrometer. For example, limiting a maximal
delay time, or retardation distance in FTIR spectrometer lim-
its the resolution of the measured spectrum. The mathemati-
cal relation between the measured data MO produced by the
measurement system 16 and the input field IF may be repre-
sented as a response function (or transter function) which acts
as a low pass (or a band-pass) filter for high spatial or tem-
poral frequencies. For nonlinear systems or for systems that
are not shift-invariant, such relation may be represented by
some other expressions. According to the invention, the mea-
sured output MO of the measurement system is a result of a
specific transformation of the input field IF caused by the
physical properties of the measurement system 16. Consid-
ering the optical imaging measurement unit, the output of the
measurement unit is preferably a result of far-field imaging of
the object. For example, the detector plane is located substan-
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tially at Fourier plane of the aperture assembly. This will be
described more specifically further below with reference to
FIGS. 6A-6B.

It should also be noted, although not specifically shown,
that the measurements system 16 may include a coder utility
for coding the input filed. The coder may be software and/or
hardware utility, using a mask, e.g. a phase mask or grating.
Accordingly, the processor utility 14 may be configured for
carrying out initial decoding of the received measured data.

Also, the measurement system may be configured for cross
correlating an input signal with a reference signal, in which
case the input field IF is a result of such cross-correlation,
while the signal to be reconstructed in said input signal. The
system may be configured to autocorrelation to an input sig-
nal; the measured input field would be a result of autocorre-
lation.

Thus, the input utility 12 is responsive to input data for
receiving (and typically storing) measured data from the mea-
surement system 16 corresponding to an output field MO
generated by said measurement system 16 in response to an
input field IF. Also, the system (e.g. via the same input utility
or another input port) receives field-related data FD and sen-
sor-related data SD. The field-related data FD includes data
about sparsity of the input (e.g. optical) field (including the
mathematical basis in which it is sparse). The sensor-related
data SD includes data indicative of the effective response
function (e.g. mathematical relation between the measured
output MO and the input field IF) of said measurement system
16. In case of optical measurement system, the effective
response function may be defined by a Coherent Transfer
function (CTF) or an Optical Transfer Function (OTF) of the
measurement system, which functions are in turn determined
by aperture(s), if any, and the free space propagation path to
the detector.

In the description below, the effective transfer function of
the optical measurement unit is at times referred to as “Opti-
cal Transfer Function” or “OTF”. However, it should be
understood, and also described above, that this term should be
interpreted broadly to refer to the CTF as well, when appro-
priate, and more generally to relation between the input field
and the output (measured) field. With regard to data about the
sparsity of the input field, as described above, this includes
the knowledge that the field is sparse at certain known basis,
and probably also a relation between the sparsity basis and the
measurement basis.

The data processor utility 14 is configured and operable
(i.e. is preprogrammed) to analyze and process the received
data to reconstruct the input field IF (irrespective of whether
it has a uniform or a non-uniform phase) and with resolution
higher than the resolution of the measurement system 16
which is limited by the properties of the measurement system
16 (e.g. by the effective cutoff frequency of the frequency
response function). The processor 14 may include inter alia a
sparse vector determination module 14A and a base transfor-
mation module 14B being software utilities running appro-
priate algorithms. The sparse vector determination module
14 A operates to process the received data (measured output
MO, data about sparsity of the input field SD, and data about
the effective response function FD, e.g. the mathematical
relation between the measured output MO and the input field
IF) and determine a sparse vector (x). The latter is thus a
function of multiple parameters including said data indicative
of'the sparsity of the input field, the output of the detector, and
the effective response function. The base transformation
module 148 operates to use the sparse vector (x) for deter-
mining a reconstructed input optical field (y,,.) as a function
of'said sparse vector and said data indicative of the sparsity of
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the input field. This enables reconstruction of the input field
(i.e. real space reconstruction).

In a specific but not limiting example, the reconstruction
process includes the following:

(a) solving the following equation:

\/(FAx—b)T-W-(FAx—b) <e m

X = argmin||x||; s.t.
* x=0

where X is a sparse vector, F is a partial Fourier matrix up to
acutoff frequency v, (thus F exemplifies an effective response
function of the measurement unit 16), A is a matrix represent-
ing the basis in which said signal is sparse (i.e. the data about
sparsity SD), b is the measurement in Fourier domain after
normalization in division by the effective response function
(e.g. OTF) of the measurement unit (i.e. measured data as a
function of the sensor-related data), € is a parameter deter-
mined by a noise value, and W is a diagonal matrix containing
squared magnitude of said response function, for increasing
frequency values on its diagonal; and
(b) reconstructing said input field (e.g. image) as:

Vrec=AR @

In a simpler case, wherein the transfer function of the
measurement system has the form of a sharp cutoft (for
example in case of coherent illumination where the CTF is
equal to unity for frequencies below the cutoft and vanishes
for frequencies above the cutoff), the normalization of the
measured data (b) and the normalization matrix W can be
omitted and the transfer function is represented solely by the
partial Fourier matrix F. Equation (1) will thus be of the form:

X = argmin|x]|; s.t. ||[b-Fx|l, = (3)

In order to explain the reconstruction method of the inven-
tion, let us consider the more simple case represented by
above eqn. (3). Let us consider the relation between the mea-
sured data and the input field expressed via the effective
response function R(E-&"):

bt (@) g(ERE-E)E’ Q)

where b#*°"(£") is the measured data (in a particular math-
ematical basis) and g(&') is the input field (in a particular
known mathematical basis, which can be the same or different
from that of the measured data). It should be noted that & and
&' can be multi-dimensional (i.e. they can have vectorial char-
acter).

Expression (4) covers all cases, where a transfer function is
involved, i.e. § can be any coordinate, namely it can be a
spatial coordinate, a time coordinate, and others.

As indicated above, the invention utilizes the fact that the
input field g' is sparse, or performs certain preprocessing
(base transformation) to transform the non-sparse input into
its sparse representation in a certain known basis.

Thus, in cases where the original signal is not sparse, it is
typically possible to transform the initial data into another
mathematical basis where it is sparse by a linear transforma-
tion M(E'-m)

&EYFME-M)dn ®

where f(n) is the original data and g(&") is the sparse repre-
sentation thereof. Generally, the transformation into the basis
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in which the original signal is sparse may be a Linear or
Nonlinear basis transformation or any general basis transfor-
mation.

As indicated above, the present invention is suitable for any
measurement application where an effective response func-
tion is involved (i.e. the frequency transfer function and/or
relation between the measured data and the input field), for
any coordinate, being a spatial coordinate, a time coordinate,
and others. Additionally, also the type of transfer function
may not be specified, i.e. the transfer function can describe
any measurement system (e.g. spatial, temporal), and the
transfer function can be either continuous or discrete func-
tion. A particular feature of transfer function is that it can
exhibit a sharp and/or a smooth cutoff for high (spatial or
temporal or other) frequencies. A sharp cutoftis defined as the
highest frequency at which the transfer function is not van-
ishing. A smooth cutoff'is defined as the highest frequency for
which the value of the transfer function is not buried in the
noise of the measurement system. Both cases resemble the
same physical situation: frequencies beyond the effective cut-
off (sharp or smooth) are lost and cannot be recovered by
conventional reconstruction schemes (e.g. de-convolution),
since then one has to divide the measured data by the transfer
function; but if the amplitude of the transfer function is below
the noise level such division leads to very large errors, ren-
dering the high frequencies contents of the input field irre-
trievable.

The invention provides a method of reconstructing the
sparse input field g(&") and, if required, also the non-sparse
initial data f(71). This method entirely relies on the knowledge
that g(&") is sparse, and on the knowledge in which basis it is
sparse. Hence, the transfer function R(§-%'") and the linear
transformation M(E'-m) are known. For the purposes of
reconstruction the input field g(&"), which is non-uniform in
phase (and possibly also amplitude), the present invention
provides for a novel iterative technique for reconstruction of
sparse signals. In particular, in the context of optical imaging,
detection of signals with non-uniform phase might be impor-
tant. The standard basis-pursuit (BP) approach used in this
field is incapable of resolving fine details of signals with
alternating phases. The present invention extends this tech-
nique to account for non-uniform phase by adding an iterative
nonlocal thresholding procedure, or more specifically the
Non Local Hard Thresholding NLHT procedure, which is
part of this invention. This algorithm allocates an off-support
of the sparse signal in an iterative fashion, by performing a
thresholding step that depends on the values of the neighbor-
ing locations (in real space). In each iteration, the algorithm
uses a BP step which takes into account noise with levels (this
algorithm is referred to in the literature as BP denoising
BPDN [13]):

(P1)méin||g||1 subject to |lb - Fgll, <& ©

Here, g is the unknown sparse information, b is the measured
data, F is the (known) transformation matrix which corre-
sponds to effective response function that transforms infor-
mation from the initial basis of the sparse information g (the
signal basis) to the measurement basis, where the measured
data b is obtained. It should be noted that both basis can be
different or identical. The value € is a small parameter deter-
mined by the noise of the measurement system. It should be
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understand, that parameters b and F are known, whereas g is
unknown. However, F cannot be inverted (due to the transfer
function which exhibits a cutoff). Hence, one searches for the
sparsest solution g, which satisfies Fg=b. In order to find this
solution, the invented technique utilizes determination of the
vector g according to the minimization problem given above.
The reconstructed vector g is then the argument of the found
minimized value, i.e.

& = argminl|g||, subject to [|b— Fgll, <e. )
g

Based on the solution of each step, the off-support of the
signal is allocated by performing the NLHT. The latter con-
sists of zeroing out each element of d which is below a fixed
threshold along with its neighbors and considering such ele-
ment as oft-support. In the next iteration, the BPDN step is
repeated with the additional constraint that the locations cor-
responding to the oft-support are set to zero. If the original
data fis not sparse in the original signal basis, it is possible to
transform it into another basis, where this data is sparse by a
linear transformation g=f, so that Eq. (6) takes the modified
form

(Pominllgl, subject to 1o~ FMfl, =& ®

In optical imaging, two important cases are distinguished
and shall be high-lightened in the following. The first one is
the coherent case, which is covered by the coherent transfer
function CTF. The field evolution of the optical amplitudes
E(x, y, z) is described by

E(xyz)={FT! {E(x,y,ZZO)}H(kX,ky,z)} 9)

where FT and FT™! denotes the Fourier transform and inverse
Fourier transform, respectively, and the CTF is given by

H=exp {iV (w/cy’-(k>+k,)}.

Here,  is the optical angular frequency and c is the speed of
light. It should be noted that the CTF does not vanish any-
where. However, above the threshold Ik, >+k 1>k, it expo-
nentially decays, so that by a measurement in the optical
far-field the waves are evanescent and completely buried in
the noise (of the measurement system and the detector).
Therefore, they are said to be lost. This can be easily modeled
by assuming a strong cutoff, using a slightly modified transfer
function

(10)

k2 + k2] < ke (11

L,
Hks, ky) ={0’

else

which is exactly zero beyond the cutoff. The second case it the
spatially incoherent case, which is described by the evolution
of' the intensities I(X, y, z)

Ixyz)=FT N FT{I(xyz=0)}H, (k k,2)}. (12)
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For the incoherent case, where one deals with intensities and
the incoherent transfer function (optical transfer function)
OTF, we have

L—WE + K2 fhe, WE+K2] <ke (13)

0, else

Hic(ks, ky) ={

It should be noted that here already the idealized transfer
function is used, which is exactly zero beyond the cutoff (i.e.
the evanescent waves are cut; these waves cannot be mea-
sured in the far-field anyhow).

Reconstructing data beyond the cutoff of a response func-
tion corresponds in mathematical terms to an under-deter-
mined system of equations, which cannot be inverted. The
problem arises from the fact that such a system has an infinite
number of solutions, which all produce the same image as
seen in the microscope. The crucial task is to extract the one
correct solution, which is, in other terms, the solution “that
makes the most sense”. This is where sparsity comes into
play. When decomposing a light field (or any data) into a set
of basis functions, then this data is said to be sparse when
most of the projections on the basis functions are negligibly
small. Since every basis function represents two degrees of
freedom (DOF), one for the projection on it and the other one
of the position, a sparse sample carries also only a limited
amount of DOF. Due to the analytic character of the propa-
gating light (electromagnetic fields are known to be always
analytic functions), the number of DOF of this field must
remain constant during propagation in free space. Accord-
ingly, the DOF in the near-field must match those in the
far-field. In general, when the number of DOF contained in a
function is N, then one requires at least N measurements at
different positions of this function. One can therefore con-
clude that performing a number of measurements (number of
measured outputs) in the low frequency region solely, which
exceeds the number of DOF, still allows for reconstructing the
entire input field. The issue is to know how many of such
measurements are required. This is answered by compressed
sensing in solving a different super-resolution problem asso-
ciated with the geometrical resolution of the detector pixel
matrix. It is an essential result of compressed sensing that, in
the absence of noise, sparse solutions are unique [8-10] irre-
spective of how sparse they are. This means that, for sparse
samples, from all the possible solutions which would create
the blurred image seen in the microscope, only one is sparse.
Hence, if one knows that the input field is sparse and only that,
one just needs to find the only sparse solution which generates
the observed blurred image. The uniqueness of the solution
guarantees that this is the correct one. In the presence of noise,
the solutions are not unique anymore. However, one can
rigorously prove that the error is bounded. This means that all
the different sparse solutions are very similar. Hence, search-
ing for the sparsest solution will result in a reconstruction that
is very close to the ideal one [11,12]. In its original context,
compressed sensing has used sparsity to reduce the number of
samplings of a given signal while still being able to recover
the signal properly. This concept was later extended to in the
domain of digital image processing, to use the knowledge
about sparsity of the input field to improve the resolution of
image sampled by a given pixel matrix after recording the
input field. This is because currently compressed sensing uses
sparsity to improve resolution of already-sampled data, with-
out attempting to use the transfer function of the system and
without extrapolating the recovered bandwidth beyond the
cutoff frequency of the measured output. As an example, let
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us consider a CCD camera with mxn pixels recording the
image of the diffraction-limited spot of a sub-wavelength
source. The common knowledge is that one can use sparsity to
improve the sampling rate of the CCD camera, i.e. one can
achieve a resolution of amxfn with a,f>1. However, in this
(commonly known) scheme, the smallest resolvable feature
would still be the diffraction-limited spot (defined by the
cutoff spatial frequency of the imaging system). Specifically,
this method cannot yield sub-wavelength resolution, mainly
because it does not use the effective transfer function of the
measurement system, e.g. corresponding to relation between
the input (real-space) basis and the measurement (image)
basis. Therefore, this approach can be considered as “inter-
polation improvement” between the measured sampling
points.

The inventors have found that, in order to achieve true
bandwidth-extrapolation, the effective response (transfer)
function R(E-£") of the measurement system (and not only of
the detector), has to be taken into account. Notably, such an
effective transfer function can also actin a different basis than
the measurement basis, where it can act as a low-pass filter. As
an example from optics, in order to low-pass filter an optical
signal, the transfer function should act in Fourier space. The
knowledge about the effective transfer function allows the
extrapolation of the bandwidth beyond the cutoff of the trans-
fer function of the measurement system, or a given interpo-
lation between the sampling points ofthe detector. Hence, the
present invention allows the recovery of the high frequency
components of the input field beyond the cutoff frequency of
the imaging system. Following the example given above, with
the sparsity-based approach used in the invention together
with the effective transfer function of the measurement sys-
tem, one is able to recover the sub-wavelength features of the
input field from measurements taken in the far-field of the
input field origination, or in the (blurred, diffraction limited)
image plane, or in any other plane in between.

It should be noted that sparsity can be used to enhance
resolution even in a system which cannot be described by a
convolution with a transfer function, i.e. which is not
expressed by Eq. (4). A good example is partially-incoherent
light, for which no transfer function exists, but rather an
integral relation describes the relation between the light field
at one plane and the field (or intensity) at another plane [14].
Hence, one cannot define a simple relation Fg=b. However, it
is still possible to enhance resolution of such a system since
the relation between g and b is well defined.

It should also be noted that in some cases the field related
data FD does not include the exact basis in which the mea-
sured field is sparse, but includes some information about a
family of such bases where some bases of the family are
appropriate for signal reconstruction. One of the suitable
basis is to be chosen being a basis that will provide satisfying
reconstruction. In such cases, the data processor utility 14,
and more specifically, its sparse vector determination module
14A may be configured to identify the appropriate basis for
reconstruction of the input field IF from the measured field
MO as will be described further below.

Reference is now made to FIGS. 2A-2C and FIGS. 3A-3B
which exemplify the principles underlying the invention, for
the case of coherent light imaging using the CTF [15]: FIGS.
2A to 2C illustrate the principles of the image reconstruction
according to the general art, and FIGS. 3A and 3B compare
the results of the reconstruction technique of the present
invention to that of FIG. 2A-2C.

In FIG. 2A, sub-wavelength information is represented by
a one-dimensional optical image, which in this example has
an alternating phase. The image presented in the figure is a
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sparse, sub-wavelength input field, which is shown in the
form of amplitude vs. position graph. The field shown is
sparse in the meaning that it has a zero value at most points in
space and a value different than zero only in a few points. The
position axis in the graph is scaled by a wavelength A being
used. As can be seen from FIG. 2A, the input field has features
smaller than the wavelength A (sub-wavelength input field).
Also, in this example, the input field has a non-uniform phase;
in this particular example the input field comprises positive
and negative values. As described above, the resolution of
imaging is limited by the diffraction limit (A/2), thus spatial
frequencies higher than 1/A cannot be transmitted by optics,
presenting a sharp cutoff frequency of the optics (for the
coherent illumination case). FIG. 2B shows the optical far-
field of the input field, which practically is the Fourier trans-
form of the input field (FIG. 2A), truncated at spatial fre-
quency of (£1/A). Such a sub-wavelength field, when being
imaged (optically processed) using conventional methods
results with a blurred image, as shown in FIG. 2C. As can be
seen in FIG. 2C, all of the sub-wavelength features of the
original input field (FIG. 2A) are lost in the image, due to the
diffraction limit, or generally cutoff frequency of the low-
pass filter of the measurement unit.

The reconstruction is based on the knowledge that the input
field is sparse in a known basis, and on the use of the known
response function of the measurement unit, i.e. that of its
low-pass filter. In this particular case, the input field is sparse
in real-space: the number of non-zero pixels in FIG. 2A is
much smaller than the total number of pixels. For the recon-
struction itself the NLHT algorithm (as described above) was
applied.

FIGS. 3A and 3B exemplify the results of the reconstruc-
tion algorithm according to a specific but not limiting
example of the invention. FIG. 3A shows the reconstructed
signal in Fourier domain. The field is reconstructed in a way
that the high spatial frequencies (frequencies above the cut-
off) are restored, and thus restore the original input field. The
reconstructed field is shown in FIG. 3B and includes all of the
sub-wavelength features of the original input field. It should
be noted that in this particular example, the measurement
basis is the Fourier space describing spatial frequencies (the
optical far field), and the basis of the IF is the real space.

As indicated above, with the sparse images, the degrees of
freedom of image reconstruction algorithm would be strongly
reduced. Given that the relative fraction of occupied basis
functions is p (<1), § samples of the signal are to be deter-
mined in an alternative basis expansion. However, the mea-
surement basis is to be chosen wisely such that the combined
matrix describing the signal and measurement bases is (left-)
invertible, to ensure the existence of a solution. If the number
of measurements is restricted, then having a measurement
basis with the lowest correlation with the signal base func-
tions ensures reconstruction under minimum number of mea-
surements. This statement, similar to the uncertainty prin-
ciple in quantum mechanics, prevents a signal from being
sparse in both bases, and ensures that, if the signal is sparse in
one of the bases, it will be very spread in the other. Therefore,
almost each projection will yield a non-zero informative mea-
surement. Classical examples of maximally uncorrelated
bases are the spatial and Fourier domains: A highly sparse
signal, e.g. a single Dirac delta function is Fourier-trans-
formed into a spread function that covers the entire spectrum.
In the sub-wavelength optical embodiment, the measurement
basis is chosen as the low spatial frequencies in the Fourier
domain. If the number of measurements is not restricted, then
the measurements can be carried out in any basis, including
the same basis as the signal, provided only that the measured
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data projects onto a sufficient number of basis functions,
corresponding to the number of degrees of freedom of the
input field.

Inview ofthe above, according to the invention, measuring
these low spatial frequencies will be sufficient to recover the
signal if it is sparse in a real-space basis, and if the relation
between the signal in real-space and the measurement basis is
known. The measurement basis can be the far-field (Fourier
plane) of the input field, or the image plane where the mea-
sured data is a blurred image of the input field, or any other
plane in between, as long as the relation to the real-space
(input) plane is known, and the measured data projects onto a
sufficient number of basis functions in the measurement
basis.

The technique of the present invention exploits, in addition
to the knowledge that the signal is sparse, information about
the measurement system, namely the effective transfer func-
tion (CTF or OTF, or relation between the input field basis and
the measured data basis as explained above), to resolve the
fine sub-wavelength features, and further for the case of non-
uniform phase of the signal preferably exposits the above-
described NLHT. The present invention utilizes preferably
the far-field image data thus simplifying the restoration of the
sub-wavelength features.

An example ofthe OTF ofatypical optical system is shown
is FIGS. 4A and 4B. In FIG. 4A, a simulated OTF in a
2-dimensional system is shown, and FIG. 4B shows a mea-
sured OTF of'a 1-dimensional experimental optical system.

Reference is now made to FIGS. 5A-5F which exemplify
the principles underlying the invention when used for recon-
struction of input field with incoherent light imaging. FIG. 5A
shows a sparse sub-wavelength image as a magnitude vs.
position graph, the position axis in the graph is scaled by the
spatial frequency cutoft of the imaging system. Spatial Fou-
rier transform ofthe image in FIG. 5A is presented in FIG. 5B.
In this example, the image of FIG. 5A corresponds to imaging
by incoherent illumination, and therefore the OTF of the
imaging system is of a triangular shape, as seen in FIG. 5D
(graph G). FIG. 5C shows the image of FIG. 5A obtained
using the conventional methods.

As indicated above, the present invention reconstructs a
sub-wavelength image taking into account the OTF of the
imaging system, being a sharp cutoff or having a more general
form. The reconstruction results, according to the present
invention, for the image of FIG. 5A are shown in FIG. 5E, and
the Fourier transform reconstruction is shown in FIG. 5F. It
should be noted that in this example, the measured data is in
Fourier space (i.e. spatial frequencies), whereas the input
field is in real space.

Reference is now made to FIGS. 6A and 6B exemplifying
two experimental setups of a measurement unit, generally at
100, both using a 4-f-setup optical system design, where FIG.
6A exemplifies near field imaging and FIG. 6B exemplifies
far field imaging. To facilitate understanding, the same refer-
ence numbers are used for identifying components that are
common in all the examples. The measurement unit 100
includes a light source unit 102 formed by a laser source (not
shown), a diffuser 104 for producing partially incoherent
light, and a beam expander 106 formed by lenses [.1 and [.2;
an optical system 108 configured as 4-f telescope including a
tunable slit 110 and lenses 1.3, [.4; and a light detector 114
(camera). The optical system has a spatial frequency cutoff,
defined by a low pass filter, which in the present example is
constituted by slit 110. The light source unit is associated with
a laser source producing a laser beam (e.g. Verdi SW, Coher-
ent Inc.) at A=532 nm. This beam is collimated using the
telescope/expander 106 of lenses [.1 and [.2, and passes
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through a sample 112 presenting a mask of certain arrange-
ment of spatial features. The information upon the mask 112
is imprinted on the beam (i.e. the beam is spatially coded by
the mask pattern), and serves as the input signal information.
The image is optically Fourier-transformed by lens [.3. The
adjustable slit 110 is placed at the focal plane of the lens [.3
(where the Fourier spectrum is obtained), acting as a control-
lable low-pass filter. The aperture of the adjustable slit 110
defines the highest resolution in the image recovered optically
at the output plane OP, being the image plane (defined by the
camera light sensitive surface) in FIG. 6A and is located in
front of the camera imaging lens L5 (in the back focal plane
thereof) in FIG. 6B. Also shown in FIG. 6B is a beam splitter
BS and a reference beam. Here, interaction between the ref-
erence beam and the laser beam collected from the sample is
used for phase detection (i.e. phase effect on the interference
pattern, as typically used on sample inspection by OCT based
techniques). It should be noted that the setups 100 practically
exemplify all possible physical features of the low-pass fil-
tering due to the optical transfer function, where a transmis-
sion window (the size and/or shape of the slit 110) is arbitrary
and tunable in both size and symmetry. The system 100 is
used for imaging an object (sample 112) with varying spatial
frequency window 110, such that the diffraction limited spot
of'the system can be in any size according to the width of the
slit opening. The Fourier transform back into the real domain
is then accomplished by another lens 1.4.

Thus, in this examples, the measurements are carried out
with a conventional CCD camera 114 (Cohu 3400), placed
either at the Fourier plane (FIG. 6B), where it measures the
cut spectrum, or at the image plane (FIG. 6A) at the output of
the 4-f system (lenses [.3 and [4), where it measures the
filtered-information. The Fourier spectrum is measured in a
Fourier plane which is created by another lens L5 (FIG. 6B).
The actual number of measurements in each frame is deter-
mined by the number of pixels in the camera. The camera
provides direct measurements of the power-spectrum (or the
intensity). The phase information, either in the Fourier plane
orin the filtered-image plane, is provided by interference with
a plane wave propagating at a known angle. Finally, optical
information is inherently 2D, whereas the current experi-
ments were dedicated on 1D information. In order to extract
the 1D information from the 2D images, the measured infor-
mation is averaged over the direction along which the infor-
mation is uniform, and a cross-section is taken through the
averaged image.

Images collected using the above described optical system
are presented in FIGS. 7A and 7B, and FIG. 7C presents a
reconstructed image resulted from the technique of the
present invention based on the image in FIG. 78. The image of
the sample (object) shown in FIG. 7A is the actual input
information (input field) acquired right after the input plane
(at a distance of 1 mm therefrom). The image shown in FIG.
7B corresponds to the closed state of the slit 110 to block high
spatial frequencies and provide for blurred image. The
blurred image of FIG. 7B was processed according to the
present invention to provide for the reconstructed image
shown in FIG. 7C resulting is high resolution which allows
for clear image of the sample. It should be noted that in this
particular example the measurement basis of the measured
output was the real space, i.e. the same basis as the input field.

The technique of the present invention can be readily
extended to two-dimensional sub-wavelength features. It
should be understood that the 2D case is physically more
challenging, because the scalar relation of Eq. (5) above
requires a modification to describe inevitable polarization
effects. That is, EM waves containing sub-wavelength 2D
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optical images cannot be linearly polarized, resulting in a
vectorial mapping between real space and the plane-wave
spectrum (a unit vector should be added in the integral of Eq.
(5)). In this connection, reference is made to FIGS. 8A-8F
showing an example containing 2D sub-wavelength ampli-
tude information. These figures describe a scalar version of
the physical reality, simply to demonstrate the ability to
recover 2D sub-wavelength images.

More specifically, FIGS. 8A to 8F demonstrate the tech-
nique of the invention in comparison to the conventional
technique for reconstructing 2D objects. FIG. 8A shows a
two-dimensional sub-wavelength object to be reconstructed
using the technique of the present invention. The 2D spatial
Fourier transform of the object is shown in FIG. 8B. FIGS. 8C
and 8D show the image of the sub-wavelength object in real
space and in Fourier domain, as measured using a conven-
tional optical system. As can be seen, spatial frequencies
above the cutoftf of the system (1/A) are blocked, and therefore
the image shown in FIG. 8C is blurred and does not contain
the fine details of the original object. FIGS. 5E and 8F show
the reconstructed image in real space and in Fourier domain
according to the present invention. As shown in FIGS. 8 A and
8E (keeping in mind that the position axis in the figures is
scaled by the wavelength 1/).), it is clear that the reconstructed
image resolution goes beyond the 1/ diffraction limit.

Thus, the invention enables to recover optical information
ataresolution exceeding the maximum resolution (defined by
a low-pass filter in Fourier space), that can be recovered by
direct optical imaging. The techniques of the present inven-
tion compensates for the loss of information by taking an
advantage of the sparsity of the input information and the
transfer function of the optical system (or generally, fre-
quency response function). Given the sparsity of the input
information is f3, and the width of the pass-band of the low-
pass filter is Ak, In anoise-free scenario, the present invention
could provide for extending the pass-band up to Ak/(2p). This
would amount to extending the pass-band of the transfer
function of free-space H(kx.ky), from Ak=4m/A to Ak=4mn/
(2PA). For very sparse information, § can be very small (e.g.,
in FIG. 1 f=0.03). This means that the smallest recoverable
features in optical microscopy could be as small as A/16 or
even smaller. Apart from sparsity, another physical limitation
is noise, which practically can never be eliminated. The tech-
nique of the present invention is rather robust to noise,
although noise does reduce its performance. However, the
detriment effects of noise can be minimized using over-sam-
pling to increase the precision of the measurements. Using a
beam-splitter in the optical system, one could measure simul-
taneously both the Fourier spectrum and the output image
(both after low-pass filtering), and in principle could measure
the field distribution in any plane between those. Hence, even
though noise will still affect the results somewhat, its detri-
ment effects could be minimized.

As indicated above, the reconstruction technique accord-
ing to the present invention utilizes sparsity of the input
information. The vast majority of natural objects, as well as
artificial objects, are sparse. Notwithstanding that, the infor-
mation does not necessarily have to be sparse in real space,
i.e. it can be sparse in any mathematical basis that is suffi-
ciently incoherent with the Fourier basis. Moreover, one can
use a mask with random phase (speckles) in the near field
right after the object (i.e. phase coding of the input field),
which projects more information from the original signal into
the low-frequency range, thereby increasing the amount of
measurable data.

With regard to sparsity of the image, it should be under-
stood that all natural images are sparse in some known basis.
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The simplest examples in optics are images that are sparse in
real space, e.g., living cells or bacteria, where the information
is only at the contour lines of the various organs, while every-
where else the cell/bacteria is transparent. Preferably, the
present invention provides for reconstructing the measured
data in the Fourier domain. However, the invention included,
as indicated above, the possibility to reconstruct a sparsified
version of the original data in a different mathematical basis,
which can be realized by a linear transformation.

Reference is made to FIGS. 9A and 9B and FIGS. 10A and
10B, showing examples for naturally-sparse (organic cell)
and manmade-sparse objects (i.e. the interior of a living bac-
terium in FIGS. 9A-9B and an integrated circuit in FIGS.
10A-10B). As seen in FIG. 9A, the bacterium/cell spatial
features occupy only a small fraction of the area of the cross
sections, being therefore highly sparse. FIG. 9B shows the
amount of element in the image and the normalized amplitude
for each element, thus showing the sparsity ofthe image. FIG.
108 shows the amount of elements in the second derivative of
the circuit shown in FIG. 10A, showing that this image, while
being not sparse in real space, is sparse in the space of the
second spatial derivative and therefore can also be recon-
structed using the present invention. In this case, one recon-
structs the second derivative (which is sparse) and recovers
from this the original data by an inverse linear transformation.

In both of the above examples, the present invention can
provide a major improvement of “looking beyond the reso-
Iution limit”. Although there are objects that are not sparse,
for example, electronic chips, it is clear that sparse objects are
not esoteric, but are rather common in very many systems,
especially in biological specimen. Finally, it should be noted
that the present invention can be applied to every optical
microscope as a simple computerized image processing tool,
delivering results in almost real time with practically no addi-
tional hardware. The technique of the present invention is
very general, and can be extended also to other, non-optical,
microscopes, such as atomic force microscope, scanning-
tunneling microscope, magnetic microscopes, and other
imaging systems.

The following are some more examples of the technique of
the present invention for image reconstruction as compared to
the conventional reconstruction technique. Reference is made
to FIGS. 11A-11J. Here, FIG. 11A shows a scanning micro-
scope image of sub-wavelength slits in a metal plate. Optical
imaging of this object is shown in FIG. 11B, where an illu-
minating wavelength of A=532 nm was used, presenting low
quality image because each of the pair of slits presented in
FIG. 11A cannot be spatially separated in the image. The
spatial cutoff Fourier spectrum of the object of FIG. 11A is
shown in FIG. 11C, which also represents the measured data.
FIG. 11D shows reconstructed image of the sub-wavelength
object, resulting from the technique of the invention, where
all slits are seen to be well separated from one another. It
should be noted that the width of the slits (150 nm) is well
below the optical wavelength (A=532 nm). In FIG. 11E, a
comparison between a cross section of the original and the
recovered sample is shown. The recovered spectrum is shown
in FIG. 11F, demonstrating a recovery of spatial frequencies
8 times larger than the cutoft frequency imposed by the CTF.
A two-dimensional application of the reconstruction tech-
niqueis presented in FIGS. 11G-K. FIG. 11G shows a Reflec-
tion Electron microscope (REM) image of the sample, with
feature size of 100 nm. When illuminating the sample with
light atA=532 nm, in a microscope the image is highly blurred
and all the sub-wavelength information is lost (FIG. 11H).
The spatial cutoff Fourier spectrum of the object of FIG. 11G
is shown in FIG. 111, which also represents the measured
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data. FIG. 11]J shows reconstructed image of the sub-wave-
length object, resulting from the technique of the invention,
where all slits are seen to be well separated from one another.
Note that the width of the slits (100 nm) is well below the
optical wavelength (A=532 nm).

The reconstruction technique of the present invention can
be also applied to recovering the waveform of optical pulses,
when measured with a detector much slower than the duration
of'the optical pulse, i.e. the rise time of the detector is larger/
longer than the pulse duration). In mathematical terms, the
response function of the measurement system exhibits a cut-
off for high temporal frequencies (i.e. it is a slow detector),
and one wants to reconstruct the high frequencies of the
optical pulse from a measurement of the low frequencies
solely. This problem is hence very similar to the sub-wave-
length imaging.

Reference is made to FIGS. 12A-12], where a numerical
example of reconstructing a short pulse using a slow detector
is illustrated. An intricate pulse, which consists of three 30
pico-seconds sub-pulses, is presented in FIG. 12A (time
domain) and FIG. 12B (spectral domain). FIG. 12C shows a
numerically detected signal that is calculated through convo-
Iution between the pulse and an impulse response function,
which is also shown in the figure. The associated spectral
transfer function and signal spectrum are shown in FIG. 12D.
The impulse response function in FIG. 12C corresponds to
the true experimentally-measured impulse response function
of'a photodiode with 1 nanosecond rise time (corresponding
to cutoff frequency £.~0.3 GHz). FIGS. 12E and 12F show
attempts to reconstruct the original pulse using Wiener de-
convolution for wide range of the Wiener de-convolution
SNR-parameter. Evidently, the de-convolved waveforms
(FIGS. 12E and 12F) are distorted significantly. Using the
reconstructing method of this invention, on the other hand,
the inventors show they are ableto extract the original pulse at
extremely high-resolution (FIGS. 12G and 12H). FIG. 12H
shows that data at the entire spectral region up to 93 GHz is
recovered very accurately. In comparison, the ‘transition fre-
quency’ in the de-convolution case (FIG. 12F) is more than 10
times smaller. In FIG. 12], the reconstructed waveform from
the convolved signal (FIG. 12C) with additional white Gaus-
sian noise at SNR=10" is shown, demonstrating the robust-
ness of the sparseness-based recovering algorithm. FIGS.
12A-12] thus exemplify that the reconstruction algorithm
presented in this invention can increase the resolution in
waveform reconstruction of short pulses by at least an order of
magnitude.

FIGS. 13A to 13G show an experimental demonstration of
the technique for waveform reconstruction of short optical
pulses that are detected by a photodiode. FIG. 13A illustrates
an experimental measurement system for inputting a laser
pulse 1, passing it through a beam splitter 2, and detecting
spatially separated light components emerging from the beam
splitter by respectively a slow photodiode pulse detector 3
(havinga rise time of 175 pico-seconds) and a fast photodiode
pulse detector 4 (having a rise time of 150 pico-seconds). A
control unit 5 having an appropriate processor utility is pro-
vided in communication with the measurement system. Thus,
a laser pulse that consists of three 150-picoseconds sub-
pulses is detected by a “slow” photodiode with 1 nanosecond
rise time, and for comparison, the pulse is also probed with a
“fast” photodiode (175 picoseconds rise time).,; One first
measures the photodiode impulse response and spectral trans-
fer functions by detecting a 30 fs pulse, which acts as
“impulse excitation” and yields the impulse response of the
detector. FIG. 13B shows the impulse response functions of
the photodiodes in the temporal domain, and FIG. 13C shows
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the impulse response functions in Fourier domain. FIG. 13D
shows a measurement by the slow and fast photodiodes, Slow
PD and Fast PD, while their Fourier spectra are shown in FIG.
13E. The reconstruction scheme was implemented on the
detected signal using the “slow” photodiode and attained a
good-quality reconstruction, as shown in FIGS. 13F, 13G,
which also show Wiener de-convolution using the same out-
put signals from the “slow” and “fast” photodiodes. More
specifically, three graphs are shown, corresponding to de-
convolution based reconstruction of measured data of slow
photodiode, Dec. Slow PD, the same reconstruction of mea-
sured data from fast photodetector, Dec. Fast PD, and to
reconstruction of the measured data of the slow photodiode
by the technique of the present invention, Reconst. FIG. 13G
shows the similar graphs (reconstructed signals) in Fourier
domain. Clearly, sparsity-based reconstruction method suc-
ceeds to extract the correct three-pulse structure whereas
Wiener de-convolution totally fails. FIG. 13 G shows that
Wiener de-convolution reconstructs the spectrum up to the
cutoff-frequency, while the sparsity-based method is able to
reconstruct the data at ~10 times higher resolution and
employs the prior information to retrieve the data that is
otherwise hidden in the noise.

Reference is made to FIGS. 14A to 14G, where an imple-
mentation of the invented reconstruction scheme is shown for
recovering the waveform of electronic pulse that was filtered
by an electronic low pass filter (LPF). FIG. 14A shows an
experimental system for measuring an electronic signal
(pulse) created by illuminating a photodiode 2 with an optical
pulse (laser pulse) 1. Here, the photodiode has a rise time of
1 nano-second while the laser pulse 1 has a duration defined
by a sequence of two sub-pulses with FWHM (Full Width at
Half Maximum) of 120 nano-seconds and a peak separation
ot 550 nanoseconds. Thus, the rise time of the photodiode is
much shorter than the duration of each sub-pulse, and accord-
ing the photodiode output is practically identical to its input.
The electronic output of the photodiode 2 presents an input
signal 6 for the experimental measurement system, i.e. this
input signal is measured and reconstructed. As shown, the
input signal 6 is probed by a fast oscilloscope 5 (constituting
a short rise-time detector) through two channels, one after
passing through a low pass filter (LPF) 3 with £ =300 KHz
(i.e. rise time much longer than the sub-pulse duration), and
the other is through an unfiltered input channel 4 of the
oscilloscope 5. Thus, a complex electronic pulse is produced
by illuminating the photodiode with 1 ns rise time by a laser
pulse that consists of two sub-pulses with FWHM of 120 ns
and a peak separation of 550 ns. The photodiode is probed by
the fast oscilloscope through electronic LPF with £ =300
KHz. For comparison, the photodiode is also probed directly.
One first measures the impulse response and spectral transfer
functions of the LPF by illuminating the photodiode witha 10
ps pulse. FIGS. 14B and 14C show the impulse response
function of the LPF in temporal and in Fourier domains
respectively. FIG. 14D shows a single-shot measurement
directly (Fast PD, unfiltered) and through the LPF (Stow PD,
filtered) whereas their Fourier spectra are shown in FIG. 14E.
The reconstruction scheme is implemented on the detected
signal through the LPF and attained a high-quality recon-
struction of the waveform (FIG. 14F). This result is compared
to a Wiener de-convolution. More specifically, FIGS. 14F and
14G show, in temporal and Fourier domains respectively, the
reconstructed signals including the signal reconstruction
according to the technique of the present invention (Recon-
structed) and the signal reconstructed using the de-convolu-
tion technique (Wiener de-convolution), in comparison to the
measurement of the unfiltered channel (Fast PD, unfiltered).
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As shown, the reconstruction method proposed in this inven-
tion significantly exceeds the accuracy of the Wiener de-
convolution. Notably, comparison between FIGS. 14E and
14G demonstrates that the proposed reconstruction technique
is capable of recovering information at spectral regions in
which the signal is completely submerged in the noise.

Notable, in the temporal case, the measured data is taken in
an intermediate basis, which is neither the time—nor the
frequency basis.

As indicated above, the technique of the present invention
may also be utilized for recovering spectral features at a
resolution exceeding the resolution limit of the measurement
apparatus. Reference is now made to FIGS. 15A-15C exem-
plifying a use of the technique of the present invention for
spectrometric measurements in an interferometer based sys-
tem. FIG. 15A illustrates a Fourier Transform Infrared
(FTIR) spectrometer system 200 used for obtaining spectral
features of a light source by self-interference (interferogram).
FIGS. 15B and 15C show respectively the measured inter-
ferogram of a light source measured by system 200 and the
spectral features of the beam calculated from said Fourier
transform results. A light source 202 is directed toward a
beam splitter 204 which splits beam P1 to produce reference
and signal beams P2 and P3 respectively; a first portion of the
beam P2 being a reference beam is directed to a first reflective
surface 206 which reflects it back to the beam splitter 204;
while a second portion P3 of the beam continues towards a
second reflective surface 208 and is reflected back to the beam
splitter 204. Typically, one of the reflective surfaces under-
goes controllable movement along the beam propagation axis
to introduce controllable (known) delay; in this example sur-
face 208 is a movable reflective surface. In some applications,
one of the reflective surfaces may constitute a sample under
inspection; in some other applications the spectral properties
of the laser beam itself are to be studied.

Both beam components are recombined at the beam splitter
204 wherein the beam components have a temporal delay
relative to each other, depending on the location of the mov-
able mirror 208 corresponding to the time of interaction (re-
combining) between the beams at the beam splitter 204. The
two beam components interfere and a resulting optical beam
P4 is collected and measured by a detector 210. Repeating
this measurement with the second (movable) mirror 208 at
successive different locations can provide a Fourier transform
of'the initial beam P1 (shown in FIG. 15B) which can be later
inverted to provide the spectral features of the initial beam P1
(FIG. 15C).

To this end, measured data generated by a spectrometer
system 200 of the type shown in FIG. 15A is typically a
truncated interferogram, which is limited in the detection
frequency due to limited retardation of the movable mirror
208. The maximal retardation distance of mirror 208, in both
directions, results in an effective response function of the
system having a cutoft at the maximal retardation distance
X, e (@s shown in FIG. 15B). If the measured signal includes
features of frequency which correspond to a larger retardation
distance, such features will be non-detectable using the stan-
dard interferometric techniques.

FIGS. 16A and 16B show experimental results of FTIR
spectrometer measurements using the above described mea-
surement system operable with a maximal retardation dis-
tance of 0.5 mm in steps of 0.2 pum, and the reconstructed
signal utilizing the technique of the present invention. It
should be understood that the maximal retardation distance of
such a system actually defines the maximal spectral resolu-
tion of the detector, while the minimal retardation step corre-
sponds to the maximal frequency that can be detected. FIG.
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16 A shows three interferogram graphs: graph S1 shows a full,
measured interferogram of a certain input signal; graph S2
shows the truncated interferogram measured by “another”
FTIR system (having lower maximal retardation distance);
and graph 53 shows the reconstructed interferogram pro-
duced by the technique of the present invention. FIG. 16B
shows the signal spectrum as received by Fourier transform of
the above shown interferograms, graph G1 shows the full,
calculated, spectrum (corresponding to S1 of FIG. 16A);
graph G2 is the spectrum received from the truncated inter-
ferogram measurement S2; and graph G3 is the reconstructed
spectrum (corresponding to graph S3). It can be easily seen
that significant information is lost in the spectrum calculated
from the truncated interferogram G2 (corresponding to S2).
The truncated interferogram S2 is then used for reconstruct-
ing the original signal using the technique of the invention as
described above, assuming the spectrum is sparse in the basis
of shifted Gaussians. As can be seen from the figure, the
reconstructed spectrum G3 includes all the main features of
the full spectrum G1.

The choice of appropriate basis for reconstruction of a
sparse signal according to the invention can be based on prior
assumption on physical properties of the measured signal.
However, at times such prior physical assumptions may not
be sufficient and the appropriate basis is to be chosen from a
family of bases (which may be infinite or not).

Thus, the technique of the present invention can find an
appropriate basis, in which the input field is sparse, from a
family of bases. To this end, with reference back to FIG. 1, the
field related data FD, may include data indicative of a family
of'bases, wherein the input field IF is assumed to be sparse in
at least one basis of said family, and is typically sparse in
several bases at different levels. The processor utility 14, and
more specifically the sparse vector determination module
14A, may be configured and operable to identify a basis
suitable for signal reconstruction out of said family of bases.
The suitable basis is selected in accordance with the mea-
sured output MO prior to determination of the sparse vector.
Itshould be noted that there may be several suitable bases and
the selected basis is chosen as one of a set of appropriate
bases.

An example for such a family of bases may be a set of
Gauss-Hermite functions, i.e. each unit vector is defined as an
appropriate Hermite polynomial multiplies by a Gaussian of
a certain width and around a certain location as follows:

(A1)

Hn(/l)e[’

Here, H,() is the n” Hermite polynomial; A, defines a point
in the space around which the basis functions are centered;
and AA defines the width of the basis functions. It should be
noted that the present example is described with relation to
spectrometry application and thus the basic variable is given
as A defining wavelength of the input signal. However this
example should be interpreted broadly to define the technique
for any type of bases family including, but not limited to,
shifted Gaussians, shifted Lorentians, shifted Delta func-
tions; and bases families more suitable for sub-wavelength
imaging such as shifted sinc functions, shifted circles,
squares etc.

To this end, a family of bases typically includes a number
of bases (being infinite or not) different from each other by
one or more parameters. In the case of Gauss-Hermite func-
tions there are two such parameters, however the number of
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free parameters may differ in accordance with mathematical
and/or geometrical properties of the basis. The sparse vector
determination module 14A operates to identify the optimal
basis by projecting the measured field (MO) on the different
bases of the family to identify the basis in which said measure
field is the most sparse. For example, in the case of Gauss-
Hermite polynomials the measured field can be presented as
follows:

(/\—/\o)]

Mo =3y’ aan(/l)exp[— NG

n

The inventors have found that the optimal basis (defined by
the parameters A, and AA) is the basis in which the coeffi-
cients vector {a,} is the most sparse. The sparse vector deter-
mination module 14 A may operate to identify the appropriate
basis by either .1 or LO minimization of the coefficients
vector {a,} as the case may be. The inventors have found that
the basis in which the measured field is the most sparse is in
many cases substantially similar to the optimal basis in which
the input field is the most sparse. It should be noted that L1
norm of a vector is the sum of absolute value of its compo-
nents while L.O norm of a vector is the number of its compo-
nents which are non-zero.

Reference is made to FIGS. 17A to 17D illustrating some
aspects used in the invention with regard to the connection
between the appropriate basis with respect to the measured
field and the appropriate basis with respect to the input field.
FIG. 17A shows Fourier transform of measurement obtained
by an FTIR spectrometer having limited retardation distance
as shown in FIG. 15A; FIG. 17B illustrates amap of L1 norm
of the projection vector of the measured spectrogram onto
Gauss-Hermite functions with different A, and AA param-
eters; FIGS. 17C and 17D show the source and the recon-
structed spectra (S1 and S2 respectively) and a map of L.1
norm of the projection vector corresponding to the source
spectrum on the same Gauss-Hermite function respectively.
In both FIGS. 17B and 17D, a circle is shown marking a
region in the projection map corresponding to bases in which
L1 of the spectrum projection is minimal. As can be seen from
these figures the minimal .1 norm is obtained for substan-
tially the same basis functions. The inventors have also found
that a substantially similar result can be obtained by choosing
a basis in which L0 norm of the projection vector is minimal.
It should be noted that such similarity between the sparsity of
the truncated/measured field and the original input field and
the corresponding basis is typically limited to conditions in
which the measurement device (e.g. FTIR) measures the
overall size of a supported signal (e.g. spectrum) quite accu-
rately.

It should be noted that different bases families may differ in
the number of free parameters defining the different bases in
the family. For example, the bases family of shifted Loren-
tians is defined by:

1 1/2w

e ey

Such bases family have only one free parameter which is the
width of the Lorentians (W). In imaging application an appro-
priate basis for reconstruction may be Fourier transform of
the image as indicated above, or other such bases. Addition-
ally a sparse image may be reconstructed utilizing other basis
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such as shifted circles, shifted rectangles, or shifted triangles,
all placed on a predetermined grid defining a geometrical
resolution of the reconstructed image.

It should be noted that as the reconstruction process is
typically a digital process, the reconstructed field may be
characterized by a certain geometrical resolution, i.e. basis
functions may be arranged on a predetermined grid or calcu-
lated with respect to a predetermined temporal clock. It
should also be noted that such predetermined geometrical
resolution is not limited by any type of response function of a
measurement system. However the resulting geometrical
resolution may be dependent on the accuracy of measured
field within the bandwidth of the measurement system. More-
over, the inventors have found that the exact choice of grid for
field reconstruction according to the present invention has
only limited effect on the accuracy of the reconstruction.

Thus, the present invention provides a simple and effective
super-resolution (e.g. sub-wavelength resolution) reconstruc-
tion of various types of signals, which technique is practically
very useful for most measurement applications. These
include optical applications (sub-wavelength imaging; detec-
tion of optical pulses by “slow” detectors) utilizing signals of
uniform or non-uniform phase; electronic applications for
measurement of electric signals; as well as applications
where an input signal is to be reconstructed from measured
data corresponding to its interaction with one or more other
reference signals. Those skilled in the art will readily appre-
ciate that various modifications and changes can be applied to
the embodiments of the invention, as herein before exempli-
fied without departing from its scope defined in and by the
appended claims.

The invention claimed is:

1. A method for reconstructing an input field sensed by a
measurement system, the method comprises:

providing measured data corresponding to output field of

said measurement system;

providing data about sparsity of the input field, and data

about an effective response function of the measurement
system; and
processing the measured data based on said data about
sparsity of the input field and about the effective
response function, the processing comprising:

determining a sparse vector as a function of said measured
data, said data about the sparsity of the input field, and
said data about the effective response function; and
using the sparse vector for reconstructing the input infor-
mation.

2. A method according to claim 1, wherein the input field is
reconstructed with resolution above an effective cutoff of said
effective response function.

3. A method according to claim 1, wherein said input signal
is an optical field.

4. A method according to claim 1, wherein the measure-
ment unit comprises an optical imaging system.

5. A method according to claim 4, wherein the input field
corresponds to coherent illumination during imaging, the
effective response function being associated with a Coherent
Transfer Function (CTF) of the measurement system.

6. A method according to claim 4, wherein the input field
corresponds to incoherent illumination during imaging, the
effective response function being associated with Optical
Transfer Function (OTF) of the measurement system.

7. A method according to claim 4, wherein the input field
corresponds to partially-incoherent illumination during
imaging, the effective response function being associated
with relation between the input field and the measured data.
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8. A method according to claim 4, wherein said recon-
structed input field has resolution corresponding to features
smaller than a diffraction-limited spot of the imaging system.

9. A method according to claim 4, wherein the measure-
ments are taken in the far-field plane of the input field.

10. A method according to claim 4, wherein the measure-
ments are taken in the image plane of the input field.

11. A method according to claim 4, wherein the measure-
ments are taken in any arbitrary plane of the input field,
provided that the relation between the measurement plane
and the input plane is known.

12. A method according to claim 1, wherein the input field
comprises one or more pulse signals, the reconstruction of the
input filed comprises reconstructing a profile of each of said
one or more pulse signals.

13. A method according to claim 12, wherein the measure-
ment system comprises a detector having the effective
response function corresponding to a temporal frequency
response.

14. A method according to claim 12, wherein the temporal
frequency response defines a rise time of the detector longer
than duration of each of said one or more pulses.

15. A method according to claim 1, wherein the input field
comprises an optical spectrum of light, the reconstruction of
the field comprising identifying a spectral profile of said
beam.

16. A method according to claim 15, wherein the measure-
ment system is a spectrometer, said effective response func-
tion being associated with maximal retardation distance or
photon lifetime of said spectrometer.

17. A method according to claim 1, wherein said providing
of the data indicative of sparsity of the input field comprises
a basis in which said input field is sparse.

18. A method according to claim 1, wherein said providing
of the data indicative of sparsity of the input field comprises
providing data about a family of bases, and determining a
suitable basis in which said input field is sparse.

19. A method according to claim 1, wherein said providing
of the data indicative of sparsity of the input field comprises
transforming the input field into sparse representation thereof
in certain known basis.

20. A method according to claim 1, wherein the input field
is sparse in a domain connected to Fourier domain by linear or
non-linear transformation.

21. A method according to claim 18, wherein the input field
is sparse in real space measured in a Fourier domain.

22. A method according to claim 18, wherein the input field
is sparse in a second derivative domain measured either in a
Fourier domain or in real space.

23. A method according to claim 1, wherein said data
indicative of sparsity of the input field has a matrix represen-
tation of the basis in which said signal is sparse.

24. A method according to claim 1, wherein said input field
has a non-uniform phase

25. A method according to claim 1, wherein said determi-
nation of the sparse vector comprises non-local hard thresh-
olding of the output field.

26. A method according to claim 25, wherein said non-
local hard thresholding comprises allocating off-support ele-
ments of the sparse vector, said allocating comprising zeroing
out each element of the sparse vector which is below a fixed
threshold along with its neighbors.

27. A method according to claim 1, wherein said process-
ing comprises an initial decoding of the measured data.

28. A method according to claim 12, wherein the measure-
ment system comprises a detection unit including at least one
of the following signal detectors: oscilloscope, photodiode,
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streak camera, frequency resolved optical gating (FROG),
Spectral Interferometer for Direct E-field Reconstruction
(SPIDER), Cross-correlation Frequency resolved optical gat-
ing (XFROG), GRENOUILLE, and TADPOLE.
29. A method according to claim 12, wherein the measure-
ment system is configured for carrying out at least one of the
following: cross correlation of an input signal with a refer-
ence signal, the input field being a result of said cross corre-
lation; and auto correlation of an input signal with itself, the
input field being a result of said autocorrelation.
30. A method for reconstructing an input field sensed by a
measurement system, the method comprises: providing mea-
sured data corresponding to output field of said measurement
system; providing data about sparsity of the input field, and
data about effective response function of the measurement
system; and processing the measured data based on said data
about the sparsity and about the effective response function to
reconstruct the input field with resolution above an effective
cutoff of the effective response function.
31. A system for reconstructing an input field, the system
comprising:
at least one input port for receiving measured data corre-
sponding to an output signal generated by a certain mea-
surement system in response to said input field; and

for receiving data indicative of the sparsity of the input
field, and data indicative of the effective response func-
tion of said measurement system; and

a data processor utility which is preprogrammed for ana-

lyzing and processing the received data to determine a
sparse vector which is a function of said measured data,
said data about sparsity of the input signal, and said data
about the effective response function, and use the sparse
vector to reconstruct the input signal by base transfor-
mation of the sparse vector onto the original base of the
input field.

32. A system according to claim 31, wherein the data
processor utility is configured and operable for transforming
the input field into sparse representation thereof in certain
known basis.

33. A system according to claim 31, wherein said recon-
structed input field has a resolution higher than an effective
cutoff frequency of said effective response function.

34. A system according to claim 31, wherein said data
processor utility is configured for identifying whether the
input field has uniform or non-uniform phase.

35. A system according to claim 31, wherein said input
field is an optical field, the output field corresponding to an
image of the input field.

36. A system according to claim 35, wherein the output
field corresponds to far field image of the input field.

37. A system according to claim 31, wherein said recon-
structed input field has features smaller than the diffraction-
limited spot of the imaging system.

38. A system according to claim 31, wherein said data
indicative of sparsity of the input field comprises a basis in
which said input field is sparse.

39. A system according to claim 31, wherein the input field
is sparse in a domain connected to Fourier domain by linear or
non-linear transformation, the processor utility being config-
ured and operable to perforin said linear or non-linear trans-
formation.

40. A system according to claim 31, wherein the input field
is sparse in real space measured in a Fourier domain.

41. A system according to claim 31, wherein the input field
is sparse in a second derivative domain measured either in
Fourier domain or in real space domain.
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42. A system according to claim 31, wherein said data
indicative of sparsity of the input field has a matrix represen-
tation of the basis in which said signal is sparse.

43. A system according to claim 31, wherein said processor
is configured for determining the sparse vector by applying to
the output field non-local hard thresholding, said non-local
hard thresholding comprises allocating off-support elements
of the sparse vector, said allocating comprising zeroing out
each element of the sparse vector which is below a fixed
threshold along with its neighbors.

44. A system according to claim 31, wherein said input
field correspond to an optical input field or an electronic input
field.

45. A system according to claim 44, wherein the input field
comprises one or more pulses, the reconstructed field has
substantially the same profile as that of each of said one or
more pulses.

46. A system according to claim 31, wherein said processor
utility in configured for carrying out initial decoding of the
received measured data.

47. A system according to claim 46, wherein the measure-
ment system comprises a coder utility for coding the input
signal.

48. A system according to claim 44, wherein the measure-
ment system comprises a detection unit including at least one
of the following signal detectors: oscilloscope, photodiode,
streak camera, frequency resolved optical gating (FROG),
Spectral Interferometer for Direct E-field Reconstruction
(SPIDER), Cross-correlation Frequency resolved optical gat-
ing (XFROG), GRENOUILLE, and TADPOLE.

49. A system according to claim 44, wherein the measure-
ment system is configured for carrying out at least one of the
following: cross correlation of an input signal with a refer-
ence signal, the input field being a result of said cross corre-
lation; and auto correlation of an input signal with itself, the
input field being a result of said autocorrelation.

50. A system for reconstructing an input field sensed by a
measurement system, the system comprising: at least one
input port for receiving measured data corresponding to out-
put field of certain measurement system, and for receiving
data about sparsity of the input field, and data about effective
response function of the measurement system; and a data
processor utility for processing the measured data based on
said data about the sparsity and about the effective response
function to reconstruct the input field with resolution above
an effective cutoff of said effective response function.

51. A measurement system comprising: an imaging system
defining an input field propagation to an optical detector, and
a control unit having a processor utility for processing mea-
sured data output from said detector, the processor utility
being configured and operable for processing the measured
data based on data about sparsity of the input field and data
about an effective response function of the imaging system to
reconstruct the input field with resolution above an effective
cutoff of said effective response function.

52. A measurement system according to claim 51 wherein
said imaging system is configured for far field imaging of the
input field.

53. A measurement system comprising: a detector having a
certain temporal response function defined by an effective
cutoff frequency thereof and being configured and operable
for receiving an input field in the form of one or more pulses
and generating measured data indicative thereof; and a con-
trol unit having a processor utility for processing the mea-
sured data, the processor utility being configured and oper-
able for processing the measured data based on data about
sparsity of the input field and data about said temporal
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response function to reconstruct the input field with resolu-
tion above said effective cutoff of said temporal response
function, thereby enabling reconstruction of a relatively short
pulse by a relatively slow detector.

54. A measurement system according to claim 53, wherein
the detector including at least one of the following signal
detectors: oscilloscope, photodiode, streak camera, fre-
quency resolved optical gating (FROG), Spectral Interferom-
eter for Direct E-field Reconstruction (SPIDER), Cross-cor-
relation Frequency resolved optical gating (XFROG),
GRENOUILLE, and TADPOLE.

55. A measurement system according to claim 53, config-
ured for carrying out at least one of the following: cross
correlation of an input signal with a reference signal, the input
field being a result of said cross correlation; and auto corre-
lation of an input signal with itself, the input field being a
result of said autocorrelation.
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